Cálculo Numérico I

Curso 2014-2015

Lista 2

 1° DE MAT./ 2° DE D.T.

- 1) Analizar la convergencia del método del punto fijo $x_{k+1} = g(x_k), k \ge 0$, para calcular las raíces reales de $f(x) = x^2 x 2$, con cada una de las siguientes g's: $g_1(x) = x^2 2$, $g_2(x) = \sqrt{x+2}$, $g_3(x) = -\sqrt{2+x}$ y $g_4(x) = 1 + \frac{2}{x}$ con $x \ne 0$.
- 2) Encontrar los puntos fijos de las siguientes iteraciones y analizar la convergencia:
- a) $x_{n+1} = \sqrt{p + x_n} \text{ con } p > 0.$
- b) $x_{n+1} = \frac{1}{2 + x_n}$.
- 3) a) Demuestre que para $\lambda \in [0,4]$ la función $g(x) = \lambda x(1-x)$ aplica el intervalo [0,1] en sí mismo.
- **b)** Consideremos $x \in [0,1]$ y $\lambda \in [0,4]$. ¿Cuántos puntos fijos tiene g?
- c) Demuestre que el punto fijo $\alpha = 0$ es atractor si $\lambda < 1$ y repulsor para $\lambda > 1$.
- 4) Se considera la ecuación $\tan x = x$ para x > 0.
- a) Demostrar que tiene una única raíz en cada uno de los intervalos $(\pi/2 + \pi n, \pi/2 + \pi(n+1)),$ $n = 0, 1, 2, \dots$
- b) Escribir un programa que use iteración para calcular las 10 primeras (n = 0, 1, ..., 9) con 6 dígitos correctos.
- 5) a) ¿Cuántos puntos fijos tiene $g(x) = (1/2)x x^3$?
- **b)** Halle un punto $\beta > 0$ con la propiedad $g(\beta) = -\beta$.
- c) ¿Qué le ocurre a la iteración de punto fijo para $x_0 \in (0, \beta)$? ¿Y para $x_0 = \beta$? ¿Y para $x_0 > \beta$? Nota que los casos en que x_0 es negativo no necesitan ser discutidos: cambiar el signo de x_0 cambia el signo de todos los iterantes.
- 6) Encuentre los puntos fijos de

$$f(x) = \frac{\pi}{2}\sin(x).$$

Para cada x_0 real la sucesión de iterantes converge a un punto fijo. Determine, en función de x_0 cuál es ese límite.

7) Sea $f \in \mathcal{C}^{m+2}$, $m \geq 1$ (la función y sus m+2 primeras derivadas son continuas) tal que

$$f(\xi) = f'(\xi) = \dots = f^{(m-1)}(\xi) = 0$$
, pero $f^{(m)}(\xi) \neq 0$.

- a) Considerar la iteración $x_{k+1} = g(x_k)$, $k \ge 0$, dada por el método de Newton (es decir, con g(x) = x f(x)/f'(x)), y demostrar que no puede tener convergencia cuadrática para resolver f(x) = 0.
- b) Considerar el método de Newton modificado: $x_{k+1} = x_k m \frac{f(x_k)}{f'(x_k)}$, $k \ge 0$, y demostrar que su orden de convergencia sí es 2.

8) Las funciones $g(x) = \sin(x)$ y $g(x) = \tan(x)$ tienen ambas el punto fijo $\alpha = 0$ y para ambas g'(0) = 1. Pruebe que para $|x_0|$ suficientemente pequeño con el seno la iteración de punto fijo converge mientras que con la tangente diverge.

En el caso $|g'(\alpha)| = 1$ la convergencia o divergencia depende de los valores de las derivadas superiores de g. Pruebe que si con $|g'(\alpha)| = 1$ hay convergencia cada error es asintóticamente de la misma magnitud del anterior con lo que la convergencia es lentísima y el método carece de utilidad en ese caso.

- 9) Suponer que $f \in \mathcal{C}^2$, $f(\xi) = 0$ y que en el intervalo $[a, \xi]$ (con $a < \xi$), f'(x) > 0 y f''(x) < 0.
- a) Demostrar que para todo $x_0 \in [a, \xi]$ el método de Newton converge a ξ .
- **b)** ¿Es eso cierto, en general, si cambiamos $[a, \xi]$ por $[\xi, a]$?
- 10)* (Método de Steffensen) El método de Newton para encontrar soluciones de f(x) = 0 tiene el inconveniente de que necesita calcular derivadas de la función f(x). Se puede sustituir la iteración de Newton por:

$$x_{n+1} = x_n - \frac{f(x_n)}{g(x_n)}$$

con g apropiada (Newton corresponde a g=f'). El método de Steffensen corresponde a tomar $g(x)=\frac{f(x+f(x))-f(x)}{f(x)}$ lo que da lugar a la iteración:

$$x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}, \ n \ge 0.$$

- a) Este método es muy cercano al de Newton ¿por qué?
- b) Aplicar esa iteración para $f(x) = e^x x 2$ con $x_0 = 1$ y "verificar" numéricamente que el orden de convergencia es 2.
- c) Analizar el comportamiento del método al variar la elección del iterante inicial $x_0 \in [-10, 10]$.
- d) Probar que si x_0 se elige suficientemente cercano a la solución x_* , $f'(x_*) \neq 0$ y $f \in \mathcal{C}^3$, el método converge cuadráticamente.